首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanisms of Action of Bcl-2 Family Proteins
Authors:Aisha Shamas-Din  Justin Kale  Brian Leber  David W Andrews
Institution:1.Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4K1, Canada;2.Department of Medicine, McMaster University, Hamilton, Ontario L8S4K1, Canada
Abstract:The Bcl-2 family of proteins controls a critical step in commitment to apoptosis by regulating permeabilization of the mitochondrial outer membrane (MOM). The family is divided into three classes: multiregion proapoptotic proteins that directly permeabilize the MOM; BH3 proteins that directly or indirectly activate the pore-forming class members; and the antiapoptotic proteins that inhibit this process at several steps. Different experimental approaches have led to several models, each proposed to explain the interactions between Bcl-2 family proteins. The discovery that many of these interactions occur at or in membranes as well as in the cytoplasm, and are governed by the concentrations and relative binding affinities of the proteins, provides a new basis for rationalizing these models. Furthermore, these dynamic interactions cause conformational changes in the Bcl-2 proteins that modulate their apoptotic function, providing additional potential modes of regulation.Apoptosis was formally described and named in 1972 as a unique morphological response to many different kinds of cell stress that was distinct from necrosis. However, despite the novelty and utility of the concept, little experimental work was performed during the following 20 years because no tools existed to manipulate the process. In the early 1990s, two seminal observations changed the landscape. First, as the complete developmental sequence of the nematode Caenorhabditis elegans was painstakingly elucidated at the single-cell level, it was noted that a fixed, predictable number of “intermediate” cells were destined to die, and that this process was positively and negatively regulated by specific genes. Second, a novel gene called B-cell CLL/lymphoma 2 (Bcl-2; encoded by BCL2) that was discovered as a partner in a reciprocal chromosomal translocation in a human tumor turned out to function not as a classic oncogene by driving cell division, but rather by preventing apoptosis. When it was discovered that the mammalian BCL2 could substitute for CED-9, the C. elegans gene that inhibits cell death, the generality of the process was recognized, and the scientific literature exploded with now well over 105 publications on apoptosis. However, it is ironic to note that after a further 20 years of intensive investigation, it is clear that the mechanism of action of Bcl-2 is quite distinct from Ced-9, which sequesters the activator of the caspase protease that is the ultimate effector of apoptosis. In contrast, Bcl-2 works primarily by binding to other related proteins that regulate permeabilization of the mitochondrial outer membrane (MOM).This review examines how apoptosis is regulated by the members of the (now very large) Bcl-2 family, composed of three groups related by structure and function (illustrated in Fig. 1): (1) the BH3 proteins that sense cellular stress and activate (either directly or indirectly); (2) the executioner proteins Bax or Bak that oligomerize in and permeabilize the MOM, thereby releasing components of the intermembrane space that activate the final, effector caspases of apoptosis; and (3) the antiapoptotic members like Bcl-2 that impede the overall process by inhibiting both the BH3 and the executioner proteins. To understand the consequence of the interactions among the three subgroups, several models have been proposed (“direct activation,” “displacement,” “embedded together,” and “unified” models; illustrated in Fig. 2) that are briefly described here before a more detailed discussion of the Bcl-2 families.Open in a separate windowFigure 1.Schematic overview of the Bcl-2 family of proteins. The family is divided into two subgroups containing proteins that either inhibit apoptosis or promote apoptosis. The proapoptotic proteins are further subdivided functionally into those that oligomerize and permeabilize the MOM, such as Bax and Bak, or those that promote apoptosis through either activating Bax or Bak or inhibiting the antiapoptotic proteins, such as tBid, Bim, Bad, and Noxa. Proteins are included in the Bcl-2 family based on sequence homology to the founding member, Bcl-2, in one of the four Bcl-2 homology (BH) regions. All the antiapoptotic proteins, as well as Bax, Bak, and Bid, have multiple BH regions, are evolutionarily related, and share a three-dimensional (3D) structural fold. The BH3 proteins contain only the BH3 region, are evolutionarily distant from the multiregion proteins, and are intrinsically unstructured. Most members of the Bcl-2 family proteins contain a membrane-binding region (MBR) on their carboxyl termini in the form of a tail anchor, mitochondrial-targeting sequence, or as a hydrophobic amino acid sequence that facilitates binding and localization of these proteins to the MOM or to the endoplasmic reticulum (ER) membrane.Open in a separate windowFigure 2.Schematics of the core mechanisms proposed by various models for the regulation of MOMP by Bcl-2 proteins. (↑) Activation; (⊥) inhibition; (⊥↑) mutual recruitment/sequestration. Paired forward and reverse symbols indicate the model makes explicit reference to equilibria. (A) The direct activation model divides the different BH3 proteins by qualitative differences in function. The BH3 proteins with high affinity for binding and activating Bax and Bak are termed as “activators,” whereas those that only bind the antiapoptotic proteins are termed “sensitizers.” The activator BH3 proteins directly interact with and activate Bax and Bak to promote MOMP. The antiapoptotic proteins inhibit MOMP by specifically sequestering the BH3 activators. The BH3 sensitizer proteins can compete for binding with the antiapoptotic proteins, thus releasing the BH3 activator proteins to avidly promote MOMP through activation and oligomerization of Bax and Bak. (B) The displacement model categorizes the BH3 proteins solely based on their affinities of binding for the antiapoptotic proteins (hence, does not recognize them as activators). In this model, Bax and Bak are constitutively active and oligomerize and induce MOMP unless held in check by the antiapoptotic proteins. Therefore, for a cell to undergo apoptosis, the correct combination of BH3 proteins must compete for binding for the different antiapoptotic proteins to liberate Bax and Bak and for MOMP to ensue. (C) The embedded together model introduces an active role for the membrane and combines the major aspects of the previous models. The interactions between members of the Bcl-2 family are governed by equlibria and therefore are contingent on the relative protein concentrations as well as their binding affinities. The latter are determined by posttranslational modifications, fraction of protein bound to the membrane, and cellular physiology. At membranes, the activator BH3 proteins directly activate Bax and Bak, which then oligomerize, inducing MOMP. Both activator and sensitizer BH3 proteins can recruit and sequester antiapoptotic proteins in the membrane. The antiapoptotic proteins inhibit apoptosis by sequestering the BH3 proteins and Bax and Bak in the membrane or by preventing their binding to membranes. At different intracellular membranes, the local concentrations of specific subsets of Bcl-2 family members alter the binding of Bcl-2 proteins to the membrane and the binding equilibria between family members. As a result, Bcl-2 family proteins have distinct but overlapping functions at different cellular locations. (D) The unified model builds on the embedded together model by proposing that the antiapoptotic proteins sequester the activator BH3 proteins (mode 1) and sequester Bax and Bak (mode 2). It differs in that in the unified model, inhibition of apoptosis through mode 1 is less efficient (smaller arrow in panel D) and therefore easier to overcome by sensitizer BH3 proteins. In addition, the unified model extends the role of Bcl-2 family proteins and the regulation of MOMP to mitochondria dynamics (not shown).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号