首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rescue of vector-expressed fowl plague virus hemagglutinin in biologically active form by acidotropic agents and coexpressed M2 protein.
Authors:M Ohuchi  A Cramer  M Vey  R Ohuchi  W Garten  and H D Klenk
Abstract:The hemagglutinin of the Rostock strain of fowl plague virus was expressed in CV-1 cells by a simian virus 40 vector, and its stability in the exocytotic transport process was examined by a fusion assay. A 50-fold increase in the fusion activity of the hemagglutinin was observed when expression occurred in the presence of ammonium chloride, Tris-HCl, or high doses of amantadine. When chloroquine, another acidotropic agent, was used, the hemagglutinin exposed at the cell surface had to be activated by trypsin, because intracellular cleavage was inhibited by this compound. Hemagglutinin mutants resistant to intracellular cleavage did not require acidotropic agents for full expression of fusion activity, when treated with trypsin after arrival at the cell surface. These results indicate that fowl plague virus hemagglutinin expressed by a simian virus 40 vector is denatured in the acidic milieu of the exocytotic pathway and that cleavage is a major factor responsible for the pH instability. Coexpression with the M2 protein also markedly enhanced the fusion activity of the hemagglutinin, and this effect was inhibited by low doses of amantadine. These results support the concept that M2, known to have ion channel function, protects the hemagglutinin from denaturation by raising the pH in the exocytotic transport system. The data also stress the importance of acidotropic agents or coexpressed M2 for the structural and functional integrity of vector-expressed hemagglutinin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号