首页 | 本学科首页   官方微博 | 高级检索  
     


Altered intracellular calcium homeostasis in cerebellar granule cells of prion protein-deficient mice
Authors:Herms J W  Korte S  Gall S  Schneider I  Dunker S  Kretzschmar H A
Affiliation:Department of Neuropathology, Georg-August Universit?t G?ttingen, G?ttingen, Germany.
Abstract:Previous studies have indicated that recombinant cellular prion protein (PrP(C)), as well as a synthetic peptide of PrP(C), affects intracellular calcium homeostasis. To analyze whether calcium homeostasis in neurons is also affected by a loss of PrP(C), we performed microfluorometric calcium measurements on cultured cerebellar granule cells derived from prion protein-deficient (Prnp(0/0)) mice. The resting concentration of intracellular free calcium [Ca(2+)](i) was found to be slightly, but significantly, reduced in Prnp(0/0) mouse granule cell neurites. Moreover, we observed a highly significant reduction in the [Ca(2+)](i) increase after high potassium depolarization. Pharmacological studies further revealed that the L-type specific blocker nifedipine, which reduces the depolarization-induced [Ca(2+)](i) increase by 66% in wild-type granule cell somas, has no effect on [Ca(2+)](i) in Prnp(0/0) mouse granule cells. Patch-clamp measurements, however, did not reveal a reduced calcium influx through voltage-gated calcium channels in Prnp(0/0) mice. These data clearly indicate that loss of PrP(C) alters the intracellular calcium homeostasis of cultured cerebellar granule cells. There is no evidence, though, that this change is due to a direct alteration of voltage-gated calcium channels.
Keywords:Prion protein    Calcium    Cerebellar granule cells    Microfluorometry    Whole-cell patch clamp
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号