首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformations of kinesin: solution vs. crystal structures and interactions with microtubules
Authors:A Marx  M Thormählen  J Müller  S Sack  E-M Mandelkow  E Mandelkow
Institution:(1) Max-Planck-Unit for Structural Molecular Biology, c/o DESY, Notkestrasse 85, D-22607 Hamburg, Germany, DE
Abstract:Recently, the molecular structures of monomeric and dimeric kinesin constructs in complex with ADP have been determined by X-ray crystallography (Kull et al. 1996; Kozielski et al. 1997 a; Sack et al. 1997). The “motor” or “head” domains have almost identical conformations in the known crystal structures, yet the kinesin dimer is asymmetric: the orientation of the two heads relative to the coiled-coil formed by their neck regions is different. We used small angle solution scattering of kinesin constructs and microtubules decorated with kinesin in order to find out whether these crystal structures are of relevance for kinesin's structure under natural conditions and for its interaction with microtubules. Our preliminary results indicate that the crystal structures of monomeric and dimeric kinesin are similar to their structures in solution, though in solution the center-of-mass distance between the motor domains of the dimer could be slightly greater. The crystal structure of dimeric kinesin can be interpreted as representing two equivalent conformations. Transitions between these or very similar conformational states may occur in solution. Binding of kinesin to microtubules has conformational effects on both, the kinesin and the microtubule. Solution scattering of kinesin decorated microtubules reveals a peak in intensity that is characteristic for the B-surface lattice and that can be used to monitor the axial repeat of the microtubules under various conditions. In decoration experiments, dimeric kinesin dissociates, at least partly, leading to a stoichiometry of 1:1 (one kinesin head per tubulin dimer; Thormählen et al. 1998 a) in contrast to the stoichiometry of 2:1 reported for dimeric ncd. This discrepancy is possibly due to the effect of steric hindrance between kinesin dimers on adjacent binding sites.
Keywords:Microtubules  Motor proteins  Kinesin  X-ray crystallography  Small angle X-ray scattering  Cell motility
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号