首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Deterministic chaos and the first positive Lyapunov exponent: a nonlinear analysis of the human electroencephalogram during sleep
Authors:J Fell  J Röschke  P Beckmann
Institution:(1) Psychiatrische Klinik, University of Mainz, Untere Zahlbacher Strasse 8, W-6500 Mainz, Germany;(2) Institut für Physik, University of Mainz, Staudinger Weg 7, W-6500 Mainz, Germany
Abstract:Under selected conditions, nonlinear dynamical systems, which can be described by deterministic models, are able to generate so-called deterministic chaos. In this case the dynamics show a sensitive dependence on initial conditions, which means that different states of a system, being arbitrarily close initially, will become macroscopically separated for sufficiently long times. In this sense, the unpredictability of the EEG might be a basic phenomenon of its chaotic character. Recent investigations of the dimensionality of EEG attractors in phase space have led to the assumption that the EEG can be regarded as a deterministic process which should not be mistaken for simple noise. The calculation of dimensionality estimates the degrees of freedom of a signal. Nevertheless, it is difficult to decide from this kind of analysis whether a process is quasiperiodic or chaotic. Therefore, we performed a new analysis by calculating the first positive Lyapunov exponent L 1 from sleep EEG data. Lyapunov exponents measure the mean exponential expansion or contraction of a flow in phase space. L 1 is zero for periodic as well as quasiperiodic processes, but positive in the case of chaotic processes expressing the sensitive dependence on initial conditions. We calculated L 1 for sleep EEG segments of 15 healthy men corresponding to the sleep stages I, II, III, IV, and REM (according to Rechtschaffen and Kales). Our investigations support the assumption that EEG signals are neither quasiperiodic waves nor a simple noise. Moreover, we found statistically significant differences between the values of L 1 for different sleep stages. All together, this kind of analysis yields a useful extension of the characterization of EEG signals in terms of nonlinear dynamical system theory.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号