首页 | 本学科首页   官方微博 | 高级检索  
     


Hepatic and nonhepatic sterol synthesis and tissue distribution following administration of a liver selective HMG-CoA reductase inhibitor, CI-981: comparison with selected HMG-CoA reductase inhibitors.
Authors:T M Bocan  E Ferguson  W McNally  P D Uhlendorf  S Bak Mueller  P Dehart  D R Sliskovic  B D Roth  B R Krause  R S Newton
Affiliation:Department of Pharmacology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, MI 48105.
Abstract:Since cholesterol biosynthesis is an integral part of cellular metabolism, several HMG-CoA reductase inhibitors were systematically analyzed in in vitro, ex vivo and in vivo sterol synthesis assays using [14C]acetate incorporation into digitonin precipitable sterols as a marker of cholesterol synthesis. Tissue distribution of radiolabeled CI-981 and lovastatin was also performed. In vitro, CI-981 and PD134967-15 were equipotent in liver, spleen, testis and adrenal, lovastatin was more potent in extrahepatic tissues than liver and BMY21950, pravastatin and PD135023-15 were more potent in liver than peripheral tissues. In ex vivo assays, all inhibitors except lovastatin preferentially inhibited liver sterol synthesis; however, pravastatin and BMY22089 were strikingly less potent in the liver. CI-981 inhibited sterol synthesis in vivo in the liver, spleen and adrenal while not affecting the testis, kidney, muscle and brain. Lovastatin inhibited sterol synthesis to a greater extent than CI-981 in the spleen, adrenal and kidney while pravastatin and BMY22089 primarily affected liver and kidney. The tissue distribution of radiolabeled CI-981 and lovastatin support the changes observed in tissue sterol synthesis. Thus, we conclude that a spectrum of liver selective HMG-CoA reductase inhibitors exist and that categorizing agents as liver selective is highly dependent upon method of analysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号