The stability and biological activity of cytokinin metabolites in soybean callus tissue |
| |
Authors: | L. M. S. Palni M. V. Palmer D. S. Letham |
| |
Affiliation: | (1) Research School of Biological Sciences, Australian National University, P.O. Box 475, 2601 Canberra City, ACT, Australia |
| |
Abstract: | The activity, uptake and metabolism of cytokinin metabolites was determined in soybean (Glycine max (L.) Merr.) callus tissue. The following activity sequence was established: zeatin riboside (ZR)>zeatin (Z)>O-glucosides of Z, ZR and their dihydro derivatives>lupinic acid (an alanine conjugate of Z)>7- and 9-glucosides of Z which were almost inactive. The 7- and 9-glucosides and lupinic acid were taken up very slowly by the callus tissue and showed great metabolic stability, but some degradation to 7-glucosyladenine, 9-glucosyladenine and the 9-alanine conjugate of adenine occurred. Compared with its aglycone, O-glucosyl-ZR exhibited slow uptake and greatly enhanced stability but gas chromatographic-mass spectrometric analysis showed that appreciable amounts were hydrolyzed to ZR in the tissue. Both ZR and O-glucosyl-ZR were metabolised extensively, with adenine, adenosine, and adenine nucleotide(s) as the major metabolites. A diversity of minor metabolites of ZR were identified, including O-glucosides, lupinic acid and dihydrolupinic acid. The metabolism of ZR was suppressed by 3-isobutyl-1-methylxanthine. When compared with the soybean callus line normally used for cytokinin bioassays (cv. Acme, cotyledonary callus), related callus lines exhibited greatly differing growth responses to cytokinin: however, these were not reflected in marked differences in metabolism.Abbreviations GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - LA lupinic acid - OGZR O--D-glucopyranosylzeatin riboside - TLC thin-layer chromatography - IMX 3-isobutyl-1-methylxanthine - Z zeatin - ZR zeatin riboside |
| |
Keywords: | Cytokini (activity, stability) Glycine (cytokinin metabolism) Tissue culture (cytokinin metabolism) |
本文献已被 SpringerLink 等数据库收录! |
|