首页 | 本学科首页   官方微博 | 高级检索  
     


Root Respiration,Photosynthesis and Grain Yield of Two Spring Wheat in Response to Soil Drying
Authors:Hong Sheng?Liu,Feng Min?Li  author-information"  >  author-information__contact u-icon-before"  >  mailto:fmli@lzu.edu.cn"   title="  fmli@lzu.edu.cn"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, China;(2) The Stake Key Laboratory of Arid Agroecology, Lanzhou University, 730000 Lanzhou, China;(3) State Key Laboratory of Soil Erosion and Dryland Farming, Institute of Soil Erosion and Water Conservation, Chinese Academy of Sciences, 712100 Shanxi, Yangling, China
Abstract:The effects of soil water regime and wheat cultivar, differing in drought tolerance with respect to root respiration and grain yield, were investigated in a greenhouse experiment. Two spring wheat (Triticum aestivum) cultivars, a drought sensitive (Longchun 8139-2) and drought tolerant (Dingxi 24) were grown in PVC tubes (120 cm in length and 10 cm in diameter) under an automatic rain-shelter. Plants were subjected to three soil moisture regimes: (1) well-watered control (85% field water capacity, FWC); (2) moderate drought stress (50% FWC) and (3) severe drought stress (30% FWC). The aim was to study the influence of root respiration on grain yield under soil drying conditions. In the experiment, severe drought stress significantly (p < 0.05) reduced shoot and root biomass, photosynthesis and root respiration rate for both cultivars, but the extent of the decreases was greater for Dingxi 24 compared to that for Longchun 8139-2. Compared with Dingxi 24, 0.04 and 0.07 mg glucose m−2 s−1 of additional energy, equivalent to 0.78 and 1.43 J m−2 s−1, was used for water absorption by Longchun 8139-2 under moderate and severe drought stress, respectively. Although the grain yield of both cultivars decreased with declining soil moisture, loss was greater in Longchun 8139-2 than in Dingxi 24, especially under severe drought stress. The drought tolerance cultivar (Dingxi 24), had a higher biomass and metabolic activity under severe drought stress compared to the sensitive cultivar (Longchun 8139-2), which resulted in further limitation of grain yield. Results show that root respiration, carbohydrates allocation (root:shoot ratio) and grain yield were closely related to soil water status and wheat cultivar. Reductions in root respiration and root biomass under severe soil drying can improve drought tolerant wheat growth and physiological activity during soil drying and improve grain yield, and hence should be advantageous over a drought sensitive cultivar in arid regions.
Keywords:Energy requirement  Grain yield  Root respiration  Soil water regime  Water use efficiency
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号