首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microglia and astroglia prevent oxidative stress-induced neuronal cell death: implications for aceruloplasminemia
Authors:Oshiro Satoru  Kawamura Ken-ichi  Zhang Chun  Sone Toshio  Morioka Masaki S  Kobayashi Shin  Nakajima Kazuyuki
Institution:Division of Molecular and Cellular Biochemistry, Department of Health Science, Faculty of Sports and Health Sciences, Daito Bunka University, 560 Iwadono, Higashi-matsuyama, Saitama 355-8501, Japan. soshiro@ic.daito.ac.jp
Abstract:We partially characterized the transferrin-independent iron uptake (Tf-IU) of neuronal and glial cells in the previous report. In the present study, we further examined a mechanism of which glial cells protect neuronal cells against iron stress using neuron-microglia (N-MG) and neuron-astrocyte (N-AS) co-cultures. When each solely purified cell was treated with iron citrate, cell death occurred in N and MG. However, AS proliferated under the same condition. Both N-MG and N-AS co-cultures were effective in resistance to excessive iron. The total and specific Tf-IU activities of N-MG co-cultures similar to those of N did not increase in a density-dependent manner. Contrarily, the total activity of AS was extremely high and the specific activity was extremely low as a result of proliferation. Regarding of effect of co-cultures on H(2)O(2)-induced cell death, N-MG co-cultures were less effective, but N-AS co-cultures were more effective in protecting N from the oxidative stress. These results suggest that N-MG co-cultures suppress the Tf-IU and N-AS co-cultures stimulate AS proliferation to protect neuronal cells. Brain cells from aceruloplasminemia with mutations in the ceruloplasmin gene take up iron by Tf-IU. Therefore, the different mechanisms of neuronal cell protection by MG and AS may explain the pathophysiological observations in the brains of patient with aceruloplasminemia.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号