首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2
Authors:Byung Chul Kim  Moon Soo Soh  Bong Joong Kang  Masaki Furuya  Hong Gil Nam
Institution:Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, South Korea;Advanced Research Laboratory, Hitachi Ltd, Hatoyama, Saitama 350-03, Japan;Plant Molecular Biology and Biotechnology Research Center, Jinju, Kyungnam, 660-701, South Korea
Abstract:By screening suppressor mutants of the hy2 mutation of Arabidopsis thaliana , two dominant photomorphogenic mutants, shy1-1D and shy2-1D , for two genetic loci designated as SHY1 and SHY2 ( s uppressor of hy 2 mutation) have been isolated. Both of these non-allelic, extragenic suppressor mutations of hy2 are located on chromosome 1 of the Arabidopsis genome. Both mutations suppress the elongated hypocotyl phenotype of hy2 by light-independent inhibition of hypocotyl growth as well as by increasing the effectiveness of light inhibition of hypocotyl elongation. The shy1-1D mutation is partially photomorphogenic in darkness with apical hook opening and reduced hypocotyl elongation. The shy2-1D mutant displays highly photomorphogenic characteristics in darkness such as true leaf development, cotyledon expansion, and extremely reduced hypocotyl growth. In regard to hypocotyl elongation, however, the shy2-1D mutation is still light sensitive. Examination of red/far-red light responses shows that the shy1-1D mutation suppresses the hypocotyl elongation of the hy2 mutation effectively in red light but not effectively in far-red light. The shy2-1D suppresses hypocotyl elongation of the hy2 mutation effectively in both red and far-red light. Both mutations can also suppress the early-flowering phenotype of hy2 and have a distinct pleiotropic effect on leaf development such as upward leaf rolling. The data obtained suggest that SHY1 and SHY2 represent a novel class of components involved in the photomorphogenic pathways of Arabidopsis . This is the first report on the identification of dominant mutations in the light signal transduction pathway of plants.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号