首页 | 本学科首页   官方微博 | 高级检索  
     


Protein diffusion in the periplasm of E. coli under osmotic stress
Authors:Sochacki Kem A  Shkel Irina A  Record M Thomas  Weisshaar James C
Affiliation:Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin;Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin;§Graduate Program in Molecular Biophysics, University of Wisconsin-Madison, Madison, Wisconsin
Abstract:The physical and mechanical properties of the cell envelope of Escherichia coli are poorly understood. We use fluorescence recovery after photobleaching to measure diffusion of periplasmic green fluorescent protein and probe the fluidity of the periplasm as a function of external osmotic conditions. For cells adapted to growth in complete medium at 0.14–1.02 Osm, the mean diffusion coefficient <Dperi> increases from 3.4 μm2 s−1 to 6.6 μm2 s−1 and the distribution of Dperi broadens as growth osmolality increases. This is consistent with a net gain of water by the periplasm, decreasing its biopolymer volume fraction. This supports a model in which the turgor pressure drops primarily across the thin peptidoglycan layer while the cell actively maintains osmotic balance between periplasm and cytoplasm, thus avoiding a substantial pressure differential across the cytoplasmic membrane. After sudden hyperosmotic shock (plasmolysis), the cytoplasm loses water as the periplasm gains water. Accordingly, <Dperi> increases threefold. The fluorescence recovery after photobleaching is complete and homogeneous in all cases, but in minimal medium, the periplasm is evidently thicker at the cell tips. For the relevant geometries, Brownian dynamics simulations in model cytoplasmic and periplasmic volumes provide analytical formulae for extraction of accurate diffusion coefficients from readily measurable quantities.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号