首页 | 本学科首页   官方微博 | 高级检索  
     


Second-harmonic generation imaging of membrane potential with retinal analogues
Authors:Theer Patrick  Denk Winfried  Sheves Mordechai  Lewis Aaron  Detwiler Peter B
Affiliation:University of Washington, Department of Physiology & Biophysics, Seattle, Washington;Max-Planck Institute for Medical Research, Heidelberg, Germany;§Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel;Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
Abstract:Second-harmonic generation (SHG) by membrane-incorporated probes is a nonlinear optical signal that is voltage-sensitive and the basis of a sensitive method for imaging membrane potential. The voltage dependence of SHG by four different probes, three retinoids (all-trans retinal), and two new retinal analogs, 3-methyl-7-(4′-dimethylamino-phenyl)-2,4,6-heptatrienal (AR-3) and 3,7-dimethyl-9-(4′-dimethylamino-phenyl)-2,4,6,8-nonatetraenal (AR-4), and a styryl dye (FM4-64), were compared in HEK-293 cells. Results were analyzed by fitting data with an expression based on an electrooptic mechanism for SHG, which depends on the complex-valued first- and second-order nonlinear electric susceptibilities (χ2 and χ3) of the probe. This gave values for the voltage sensitivity at the cell's resting potential, the voltage where the SHG is minimal, and the amplitude of the signal at that voltage for each of the four compounds. These measures show that χ2 and χ3 are complex numbers for all compounds except all-trans retinal, consistent with the proximities of excitation and/or emission wavelengths to molecular resonances. Estimates of probe orientation and location in the membrane electric field show that, for the far-from-resonance case, the shot noise-limited signal/noise ratio depends on the location of the probe in the membrane, and on χ3 but not on χ2.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号