首页 | 本学科首页   官方微博 | 高级检索  
     


Interactions between S4-S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels
Authors:Tristani-Firouzi Martin  Chen Jun  Sanguinetti Michael C
Affiliation:Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA. mfirouzi@hmbg.utah.edu
Abstract:Outward movement of the voltage sensor is coupled to activation in voltage-gated ion channels; however, the precise mechanism and structural basis of this gating event are poorly understood. Potential insight into the coupling mechanism was provided by our previous finding that mutation to Lys of a single residue (Asp(540)) located in the S4-S5 linker endowed HERG (human ether-a-go-go-related gene) K(+) channels with the unusual ability to open in response to membrane depolarization and hyperpolarization in a voltage-dependent manner. We hypothesized that the unusual hyperpolarization-induced gating occurred through an interaction between Lys(540) and the C-terminal end of the S6 domain, the region proposed to form the activation gate. Therefore, we mutated six residues located in this region of S6 (Ile(662)-Tyr(667)) to Ala in D540K HERG channels. Mutation of Arg(665), but not the other five residues, prevented hyperpolarization-dependent reopening of D540K HERG channels. Mutation of Arg(665) to Gln or Asp also prevented reopening. In addition, D540R and D540K/R665K HERG reopened in response to hyperpolarization. Together these findings suggest that a single residue (Arg(665)) in the S6 domain interacts with Lys(540) by electrostatic repulsion to couple voltage sensing to hyperpolarization-dependent opening of D540K HERG K(+) channels. Moreover, our findings suggest that the C-terminal ends of S4 and S6 are in close proximity at hyperpolarized membrane potentials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号