首页 | 本学科首页   官方微博 | 高级检索  
   检索      


NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis
Authors:Day Brad  Dahlbeck Douglas  Staskawicz Brian J
Institution:Department of Plant and Microbial Biology, University of California, Berkeley, California 94270, USA.
Abstract:Recognition of pathogens by plants involves the coordinated efforts of molecular chaperones, disease resistance (R) proteins, and components of disease resistance signaling pathways. Characterization of events associated with pathogen perception in Arabidopsis thaliana has advanced understanding of molecular genetic mechanisms associated with disease resistance and protein interactions critical for the activation of resistance signaling. Regulation of R protein-mediated signaling in response to the bacterial pathogen Pseudomonas syringae in Arabidopsis involves the physical association of at least two R proteins with the negative regulator RPM1 INTERACTING PROTEIN4 (RIN4). While the RIN4-RPS2 (for RESISTANCE TO P. SYRINGAE2) and RIN4-RPM1 (for RESISTANCE TO P. SYRINGAE PV MACULICOLA1) signaling pathways exhibit differential mechanisms of activation in terms of effector action, the requirement for NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) is shared. Using a yeast two-hybrid screen, followed by a series of coimmunoprecipitation experiments, we demonstrate that the RIN4-NDR1 interaction occurs on the cytoplasmically localized N-terminal portion of NDR1 and that this interaction is required for the activation of resistance signaling following infection by P. syringae expressing the Cys protease Type III effector protein AvrRpt2. We demonstrate that like RPS2 and RPM1, NDR1 also associates with RIN4 in planta. We suggest that this interaction serves to further regulate activation of disease resistance signaling following recognition of P. syringae DC3000-AvrRpt2 by Arabidopsis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号