首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pseudomonas aeruginosa exotoxin A: alterations of biological and biochemical properties resulting from mutation of glutamic acid 553 to aspartic acid
Authors:C M Douglas  R J Collier
Institution:Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts.
Abstract:Glutamic acid 553 of Pseudomonas aeruginosa exotoxin A (ETA) was identified earlier as a putative active-site residue by photoaffinity labeling with NAD. Here ETA-E553D, a cloned form of the toxin in which Glu-553 has been replaced by aspartic acid, was purified from Escherichia coli extracts and characterized. Cytotoxicity of the mutant toxin for mouse L-M cells was less than 1/400,000 that of the wild type. The mutation caused a 3200-fold reduction in NAD:elongation factor 2 ADP-ribosyltransferase activity, as estimated by assays with an active fragment derived from the toxin by digestion with thermolysin. NAD glycohydrolase activity was reduced somewhat less, by a factor of 50, and photoaffinity labeling with NAD by a factor of 2. We detected less than 2-fold change in the values of KM for NAD or elongation factor 2 and no change in KD for NAD, as determined by quenching of protein fluorescence. The drastic reduction of ADP-ribosyltransferase activity therefore results primarily from an effect of the mutation on kcat, implying that Glu-553 plays an important and possibly direct role in catalyzing this reaction. The effects of the E553D mutation are similar to those of the E148D mutation in diphtheria toxin, supporting the notion that these two Glu residues perform the same function in their respective toxins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号