首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium
Authors:Yang Liju  Li Yanbin  Griffis Carl L  Johnson Michael G
Institution:Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
Abstract:Interdigitated microelectrodes (IMEs) were used as impedance sensors for rapid detection of viable Salmonella typhimurium in a selective medium and milk samples. The impedance growth curves, impedance against bacterial growth time, were recorded at four frequencies (10Hz, 100Hz, 1kHz, and 10kHz) during the growth of S. typhimurium. The impedance did not change until the cell number reached 10(5)-10(6) CFUml(-1). The greatest change in impedance was observed at 10Hz. To better understand the mechanism of the IME impedance sensor, an equivalent electrical circuit, consisting of double layer capacitors, a dielectric capacitor, and a medium resistor, was introduced and used for interpreting the change in impedance during bacterial growth. Bacterial attachment to the electrode surface was observed with scanning electron microscopy, and it had effect on the impedance measurement. The detection time, t(D), defined as the time for the impedance to start change, was obtained from the impedance growth curve at 10Hz and had a linear relationship with the logarithmic value of the initial cell number of S. typhimurium in the medium and milk samples. The regression equations for the cell numbers between 4.8 and 5.4 x 10(5) CFUml(-1) were t(D) = -1.38 log N + 10.18 with R(2) = 0.99 in the pure medium and t(D) = -1.54 log N + 11.33 with R(2) = 0.98 in milk samples, respectively. The detection times for 4.8 and 5.4 x 10(5) CFUml(-1) initial cell numbers were 9.3 and 2.2 h, respectively, and the detection limit could be as low as 1 cell in a sample.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号