首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Binding of anti-nucleoside antibodies reveals different classes of DNA in the chromosomes of the kangaroo rat (Dipodomys ordii)
Authors:RR Schreck  BF Erlanger  OJ Miller  
Institution:1. Department of Human Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;2. Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;3. Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
Abstract:The binding of highly purified anti-nucleoside antibodies to fixed metaphase chromosomes of the kangaroo rat (Dipodomys ordii) revealed the presence of different classes of DNA in different regions of the chromosomes. To permit antibody binding, the chromosomal DNA was first made single-stranded by either ultraviolet irradiation, which denatures some classes of AT-rich DNA, or photo-oxidation, which denatures GC-rich DNA. The antibody binding patterns obtained matched the location of the different classes of satellite DNA in kangaroo rat chromosomes. After either denaturation method, anti-5-methylcytidine (anti-M) bound intensely only to the centromeric heterochromatic regions which are known to contain the GC rich, highly methylated HS-β satellite DNA of this species. The basic repeating unit of the HS-β sequence is 5′-ACACAGCGGG-3′ 3′-TGTGTCGCCC-5′ 4]. The binding of anti-M after UV irradiation is permitted by the production of pyrmidine (CC and TC) dimers in the right-hand portion of this repeating sequence, supporting the idea that the 5-methylcytosine residues are in this portion. After photo-oxidation, anti-cytidine (anti-C) and anti-adenosine (anti-A) also showed intense binding to the centromeric heterochromatin. In addition, these antibodies showed moderately intense binding to non-centromeric heterochromatic regions, which contain the relatively GC-rich HS-α and MS satellite DNAs. After UV irradiation, anti-A binding produced a banding pattern identical to the quinacrine (Q-band) pattern, with bright chromosome arms and very dull centromeric heterochromatic regions, while anti-C showed moderate binding in the centromeric regions and fairly even but weak binding elsewhere.The results have clarified the way in which anti-nucleoside antibodies react with chromosomal DNA. The reactivity of anti-A, anti-C and anti-M with the partially denatured HS-β satellite DNA supports the idea that antibody binding requires denaturation of a sequence perhaps no more than 5 base pairs long. In addition, it appears that it is not necessary to have more than one identical base in a row to permit antibody binding.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号