首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana
Authors:Diaz Céline  Saliba-Colombani Vera  Loudet Olivier  Belluomo Pierre  Moreau Laurence  Daniel-Vedele Françoise  Morot-Gaudry Jean-François  Masclaux-Daubresse Céline
Institution:Unité de Nutrition Azotée des Plantes, INRA, Versailles, France.
Abstract:For the first time in Arabidopsis thaliana, this work proposes the identification of quantitative trait loci (QTLs) associated with leaf senescence and stress response symptoms such as yellowing and anthocyanin-associated redness. When Arabidopsis plants were cultivated under low nitrogen conditions, we observed that both yellowing of the old leaves of the rosette and whole rosette redness were promoted. Leaf yellowing is a senescence symptom related to chlorophyll breakdown. Redness is a symptom of anthocyanin accumulation related to whole plant ageing and nutrient limitation. In this work, Arabidopsis is used as a model system to dissect the genetic variation of these parameters by QTL mapping in the 415 recombinant inbred lines of the Bay-0xShahdara population. Fifteen new QTLs and two epistatic interactions were described in this study. The yellowing of the rosette, estimated by visual notation and image processing, was controlled by four and five QTLs, respectively. The visual estimation of redness allowed us to detect six QTLs among which the major one explained 33% of the total variation. Two main QTLs were confirmed in near-isogenic lines (heterogenous inbred family; HIF), thus confirming the relevance of the visual notation of these traits. Co-localizations between QTLs for leaf yellowing, redness and nitrogen use efficiency described in a previous publication indicate complex interconnected pathways involved in both nitrogen management and senescence- and stress-related processes. No co-localization between QTLs for leaf yellowing and redness has been found, suggesting that the two characters are genetically independent.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号