首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spiroiminodihydantoin lesions derived from guanine oxidation: structures, energetics, and functional implications
Authors:Jia Lei  Shafirovich Vladimir  Shapiro Robert  Geacintov Nicholas E  Broyde Suse
Institution:Department of Chemistry, New York University, New York, New York 10003, USA.
Abstract:Reactive oxygen species present in the cell generate DNA damage. One of the major oxidation products of guanine in DNA, 8-oxo-7,8-dihydroguanine, formed by loss of two electrons, is among the most extensively studied base lesions. The further removal of two electrons from this product can yield spiroiminodihydantoin (Sp) R and S stereoisomers. Both in vitro and in vivo experiments have shown that the Sp stereoisomers are highly mutagenic, causing G --> T and G --> C transversions. Hence, they are of interest as examples of endogenous DNA damage that may initiate cancer. To interpret the mutagenic properties of the Sp lesions, an understanding of their structural properties is needed. To elucidate these structural effects, we have carried out computational investigations at the level of the Sp-modified base and nucleoside. At the base level, quantum mechanical geometry optimization studies have revealed exact mirror image symmetry of the R and S stereoisomers, with a near-perpendicular geometry of the two rings. At the nucleoside level, an extensive survey of the potential energy surface by molecular mechanics calculations using AMBER has provided three-dimensional potential energy maps. These maps reveal that the range and flexibility of the glycosidic torsion angles are significantly more restricted in both stereoisomeric adducts than in unmodified 2'-deoxyguanosine. The structural and energetic results suggest that the unusual geometric, steric, and hydrogen bonding properties of these lesions underlie their mutagenicity. In addition, stereoisomer-specific differences indicate the possibility that their processing by cellular replication and repair enzymes may be differentially affected by their absolute configuration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号