首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of sustained serum prolactin elevation on breast epithelial and myoepithelial cell proliferation
Authors:B M Stringer  J Rowson  W Greer  D Wynford-Thomas  E D Williams
Affiliation:Department of Biological, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.
Abstract:Oral administration of the dopamine antagonist perphenazine (0.01% in drinking water) to adult female Sprague-Dawley rats led to a three- to fourfold increase in serum prolactin by the first time point sampled (day 2) and a sustained fourfold elevation from day 4 of treatment to the end of the experiment (day 54). In response, five- to sixfold (day 7) and three- to fourfold (day 4) peak elevations in the epithelial cell metaphase indices were seen in the breast lobular and ductular compartments respectively. Both indices fell to basal levels on day 14 but returned to a second, but diminished, peak on day 27. By day 54, the mitotic activity of the epithelium had fallen to just above basal levels in both compartments. A similar mitotic response occurred in the myoepithelial cells, clearly indicating that these must be considered an important cell kinetic component during breast stimulation. Breast epithelial cell number increased 13-14 fold in the lobular but only two- to threefold in the ductular compartments in response to perphenazine administration. Again, similar responses were seen in the myoepithelial cell population. The major proliferative response therefore occurred within the lobular as opposed to the ductular compartment. A considerable discrepancy was shown between the cell number at each time point and that predicted on the assumption of constant cell death rate. We conclude that a growth desensitizing mechanism exists in the rat breast which limits breast growth in the presence of a sustained trophic hormone stimulation. Furthermore, we suggest that this limitation in breast growth is brought about by a mechanism which involves increased cell death in addition to decreased mitotic activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号