首页 | 本学科首页   官方微博 | 高级检索  
     


DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship
Authors:Zheng Li-Fang  Wei Qing-Yi  Cai Yu-Jun  Fang Jian-Guo  Zhou Bo  Yang Li  Liu Zhong-Li
Affiliation:

aNational Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China

Abstract:The prooxidant effect of resveratrol (3,5,4′-trihydroxy-trans-stibene) and its synthetic analogues (ArOH), that is, 3,4,4′-trihydroxy-trans-stibene (3,4,4′-THS), 3,4,5-trihydroxy-trans-stibene (3,4,5-THS), 3,4-dihydroxy-trans-stibene (3,4-DHS), 4,4′-dihydroxy-trans-stibene (4,4′-DHS), 2,4-dihydroxy-trans-stilbene (2,4-DHS), 3,5-dihydroxy-trans-stilbene (3,5-DHS) and 3,5,4′-trimethoxy-trans-stibene (3,5,4′-TMS), on supercoiled pBR322 plasmid DNA strand breakage and calf thymus DNA damage in the presence of Cu (II) ions has been studied. It was found that the compounds bearing ortho-dihydroxyl groups (3,4-DHS, 3,4,4′-THS, and 3,4,5-THS) or bearing 4-hydroxyl groups (2,4-DHS, 4,4′-DHS, and resveratrol) exhibit remarkably higher activity in the DNA damage than the ones bearing no such functionalities. Kinetic analysis by UV-visible spectra demonstrates that the formation of ArOH-Cu (II) complexes, the stabilization of oxidative intermediate derived from ArOH and Cu (II)/Cu (I) redox cycles, might be responsible for the DNA damage. This study also reveals a good correlation between antioxidant and prooxidant activity, as well as cytotoxicity against human leukemia (HL-60 and Jurkat) cell lines. The mechanisms and implications of these observations are discussed.
Keywords:Resveratrol   DNA damage   Copper   Structure/activity relationship   Reactive oxygen species
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号