首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Primary structure requirements for Xenopus nodal-related 3 and a comparison with regions required by Xenopus nodal-related 2
Authors:Ezal C H  Marion C D  Smith W C
Institution:Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA.
Abstract:Transforming growth factor-beta superfamily members play important roles in the early development of animals. Activin and the Xenopus nodal related proteins 1, 2, and 4 induce muscle actin from Xenopus ectodermal explants, whereas the bone morphogenetic proteins 4 and 7 induce ectoderm to differentiate as epidermis. Bone morphogenetic proteins are antagonized by soluble binding proteins such as noggin and chordin, which leads to expression of neural cell adhesion molecule in animal caps. The transforming growth factor-beta superfamily member Xenopus nodal-related 3 also induces the neural cell adhesion molecule through inhibition of bone morphogenetic proteins. Therefore, whereas Xenopus nodal-related 2 and 3 share a high amount of sequence homology, they lead to very different cell fates. This study investigates the functional domains that distinguish the activities of these two factors. It was found that mutually exclusive regions of nodal-related 2 and 3 were required for activity. The central region of the mature domain is required for nodal-related 2 to induce muscle actin, whereas the N- and C-terminal ends of the mature domain are required for nodal-related 3 to induce neural cell adhesion molecule. These results help to define the minimal domains required for the unique activities of these factors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号