首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes.
Authors:Hiroki Aoki  Peter M Kang  James Hampe  Koichi Yoshimura  Takafumi Noma  Masunori Matsuzaki  Seigo Izumo
Institution:Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine, Minami Kogushi, Ube, Yamaguchi 755-8505, Japan. haoki@po.cc.yamaguchi-u.ac.jp
Abstract:Although oxidative stress causes activation of c-Jun N-terminal kinase (JNK) and apoptosis in many cell types, how the JNK pathway is connected to the apoptosis pathway is unclear. The molecular mechanism of JNK-mediated apoptosis was investigated in adult rat cardiac myocytes in culture as a model system that is sensitive to oxidative stress. Oxidative stress caused JNK activation, cytochrome c release, and apoptosis without new protein synthesis. Oxidative stress-induced apoptosis was abrogated by dominant negative stress-activated protein kinase/extracellular signal-regulated kinase kinase-1 (SEK1)-mediated inhibition of the JNK pathway, whereas activation of the JNK pathway by constitutively active SEK1 was sufficient to cause apoptosis. Inhibition of caspase-9, an apical caspase in the mitochondrial apoptosis pathway, suppressed oxidative stress-induced apoptosis, whereas inhibition of caspase-8 had no effect, indicating that both the JNK pathway and the mitochondrial apoptosis machinery are central to oxidative stress-induced apoptosis. Both JNK and SEK1 localized on mitochondria where JNK was activated by oxidative stress. Furthermore, active JNK caused the release of apoptogenic factors such as cytochrome c from isolated mitochondria in a cell-free assay. These findings indicate that the JNK pathway is a direct activator of mitochondrial death machinery without other cellular components and provide a molecular linkage from oxidative stress to the mitochondrial apoptosis machinery.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号