首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissolved oxygen and dissolved inorganic carbon stable isotope composition and concentration fluxes across several shallow floodplain aquifers and in a diffusion experiment
Authors:Stephen R Parker  Marissa N Darvis  Simon R Poulson  Christopher H Gammons  Jack A Stanford
Institution:1. Department of Chemistry and Geochemistry, Montana Tech of The University of Montana, 1300 W. Park Street, Butte, MT, 59701, USA
2. Department of Geological Sciences and Engineering, University of Nevada-Reno, 1664 N. Virginia Street, Reno, NV, 89557-0138, USA
3. Department of Geological Engineering, Montana Tech of The University of Montana, 1300 W. Park Street, Butte, MT, 59701, USA
4. Flathead Lake Biological Station, Department of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA
Abstract:Recent studies have documented the occurrence of dissolved molecular oxygen (DO) in shallow groundwater that is isotopically lighter than can be explained by atmospheric gas exchange or by biogeochemical reactions that consume 16O16O faster than 16O18O. In the present study, spatial gradients in the isotopic composition of DO (δ18O-DO) and dissolved inorganic carbon (δ13C-DIC) were measured in three shallow floodplain aquifers: (1) the Nyack aquifer, of the Middle Fork of the Flathead River in northwest Montana; (2) the Silver Bow Creek floodplain in southwest Montana; and (3) the Umatilla River floodplain in northeast Oregon. The field data show general trends of increasing DIC concentration, decreasing δ13C-DIC, and decreasing DO concentration with increase in groundwater path length. These trends are consistent with consumption of DO and production of DIC by microbial respiration. Although the expected trend of an increase in δ18O-DO with increase in path length was found at an area adjacent to hyporheic recharge at the Nyack floodplain, the majority of groundwater samples collected at Nyack and from the other sites distal to recharge zones had anomalously low δ18O-DO values well below 24.2 ‰, the value corresponding to atmospheric isotopic equilibrium. At the Nyack site, 3H-3He dates were used to estimate groundwater travel time: all groundwater samples with apparent age >1 year had δ18O-DO<24.2 ‰. Previously it has been suggested that diffusion of O2 could be a viable mechanism to explain the existence of isotopically light DO in shallow groundwater. To test this hypothesis, laboratory experiments were conducted to measure the isotopic fractionation of O2 as it diffuses from air across a simulated capillary fringe (made from a floating layer of foam beads) into a stirred, initially anoxic, water column. As expected, 16O16O diffused faster than 16O18O, and the magnitude of isotope fractionation associated with diffusion increased with a decrease in temperature. Fractionation factors (α) calculated from these diffusion experiments were 1.0030 at 15–19 °C and 1.0048 at 8 °C. The combined field and laboratory data suggest that diffusion is an important mechanism to maintain aerobic conditions in shallow groundwater systems, allowing microbial respiration to continue at long distances (km scale) from the source of groundwater recharge.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号