首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrogen input quality changes the biochemical composition of soil organic matter stabilized in the fine fraction: a long-term study
Authors:A W Gillespie  A Diochon  B L Ma  M J Morrison  L Kellman  F L Walley  T Z Regier  D Chevrier  J J Dynes  E G Gregorich
Institution:1. Science and Technology Branch, Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, ON, K1A 0C6, Canada
2. Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
3. Department of Earth Sciences, St Francis Xavier University, P.O. Box 5000, Antigonish, NS, B2G 2W5, Canada
4. Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
5. Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
Abstract:The chemical composition of soil organic matter (SOM) is a key determinant of its biological stability. Our objective in this study was to evaluate the effects of various sources of supplemental N on the chemical composition of SOM in the fine (<5 μm) mineral fraction. Treatments were fallow, maize/soybean in rotation, and continuous maize receiving no fertilizer (maize0N), synthetic fertilizer N (maize + N), or composted manure (maize + manure). The chemical structures in SOM associated with the fine fraction were determined using XANES spectroscopy at the C and N K-edges, which was assessed using multidimensional scaling. Analysis of amino sugar biomarkers were used to evaluate the fungal:bacterial contributions to the SOM. The addition of N to soils (i.e., maize + N, maize + manure, and maize/soybean treatments) resulted in the enrichment of proteinaceous compounds. Soils which did not receive supplemental N (i.e., fallow and maize0N treatments) were enriched in plant-derived compounds (e.g., aromatics, phenolics, carboxylic acids and aliphatic compounds), suggesting that decomposition of plant residues was constrained by N-limitation. Microbial populations assessed by amino sugar biomarker ratios showed that the highest contributions to SOM by bacteria occurred in the maize + manure treatment (high N input), and by fungi in the fallow treatment (low N input). The SOM in the maize + N and maize/soybean treatments was enriched in N-bonded aromatics; we attribute this enrichment to the abiotic reaction of inorganic N with organic C structures. The SOM in the maize + manure treatment was enriched in pyridinic-N, likely as a result of intense microbial processing and high SOM turnover. The presences of signals for ketone and pyrrole compounds in XANES spectra suggest their use as biomarkers for microbially transformed and stabilized SOM. The SOM in the maize + manure treatment was enriched in ketones which are likely microbial by-products of fatty acid catabolism. Pyrrole compounds, which may accumulate over the long term as by-products of protein transformations by an N-limited microbial community, were dominant in the fallow soil. A combination of molecular spectroscopy and biomarker analysis showed that the source of supplemental N to soil influences the stable C- and N-containing compounds of SOM in a long-term field study. Indeed, any increase in N availability allowed the microbial community to transform plant material into microbial by-products which occur as stable SOM compounds in the fine soil fraction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号