首页 | 本学科首页   官方微博 | 高级检索  
     


The induction of apoptosis in human cervical carcinoma (HeLa) cells by gamma-linolenic acid
Authors:M. de Kock   M. -L. Lottering   C. J. S. Grobler   T. C. Viljoen   M. le Roux  J. C. Seegers  
Affiliation:1Department of Physiology, Medical University of Southern Africa South Africa;2Department of Physiology University of Pretoria, South Africa;3Department of Anatomical Pathology, Medical University of Southem Africa South Africa
Abstract:A high concentration (50 μg/ml) of gamma-linolenic acid (GLA) induced morphological lesions typical of apoptosis, as well as DNA fragmentation, in HeLa cells. A lower concentration of GLA (20 μg/ml), caused an increased proliferating cell nuclear antigen (PCNA) labelling, with 92.7% cells positive, compared to 27.7% at a concentration of 50 μg/ml GLA. In correlation with these results, the number of cells with degraded DNA below the G0/G1 peak increased significantly in the 50 μg/ml GLA-treated cells, but increased only slightly in cells exposed to the lower level of GLA. The high levels of PCNA induced by 20 μg/ml GLA, in both G1 and S phases, may indicate a state of DNA repair synthesis, whilst at the higher concentration of GLA, most of the cells became apoptotic. Since apoptosis is associated with the deregulation of c-Myc expression, and as the Raf-1-MAP kinase cascade activates the expression of c-Myc and c-Jun, we investigated the effects of 20 and 50 μg/ml GLA on the Raf-1, c-Myc and c-Jun levels, and on the activity of MAP kinase. The results showed that 50 μg/ml GLA lowered the activity of MAP kinase. As expected with the decreased MAP kinase activity in the cells exposed to the higher level GLA, the c-Jun levels were also lowered. The levels of c-Myc, however, were increased. It is therefore possible that the deregulated expression of c-Myc in the HeLa cells exposed to the high level of GLA (50 μg/ml) may contribute to the induction of apoptosis in HeLa cells.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号