首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temporal variation in density dependent body growth of a large herbivore
Authors:Ragnhild Mobæk  Atle Mysterud  Øystein Holand  Gunnar Austrheim
Institution:Dept of Animal and Aquacultural Sciences, Norwegian Univ. of Life Sciences, PO Box 5003, NO‐1432 ?s, Norway.
Abstract:Temporal variation both due to density dependent and density independent processes affect performance and vital rates in large herbivores. Annual fluctuations in climate affect foraging conditions and thus body growth of large herbivores during the short growing season in alpine habitats. Also, high animal densities on summer ranges may increase competition for food and reduce body mass gain. Yet, little is known about interactive effects of density and climate on alpine summer ranges, and the time scales these processes operate on. In this fully replicated landscape‐scale experiment, we kept domestic sheep at high and low densities over nine grazing seasons in an alpine habitat, and tested the relative role of density and annual variation for lamb body mass gain during summer and whether effects of density and annual variation interacted. We found that lambs at high density gained less mass over the summer season than lambs at low density. At short time scales the density effect interacted with annual fluctuations in body growth. We documented a long‐term temporal trend in body mass, consistent with the hypothesis that grazing effects affect habitat differentially at high and low density over years. At high density lamb autumn body mass declined during the first three grazing seasons and then stabilized, whereas body mass slightly increased over years at low density. This long‐term trend suggests accumulative density dependent effects from a biomass or quality reduction, and hence delayed food competition at high density and possibly facilitation at low density. Our experiment provides new insight into how density dependent effects on performance of a large herbivore depend on temporal scale of observation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号