首页 | 本学科首页   官方微博 | 高级检索  
     


The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5
Authors:Gameiro Armanda  Braams Simona  Rauen Thomas  Grewer Christof
Affiliation:Department of Chemistry, Binghamton University, Binghamton, New York;Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany;§Department of Biophysics, Universität Osnabrück, Osnabrück, Germany
Abstract:Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na+ and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na+ and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a Km= 61 ± 11 μM. Binding of Na+ to the empty transporter is associated with a Km = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a Km = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na+ binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号