首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Location trumps length: polyglutamine-mediated changes in folding and aggregation of a host protein
Authors:Tobelmann Matthew D  Murphy Regina M
Institution:Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin
Abstract:Expanded CAG diseases are progressive neurodegenerative disorders in which specific proteins have an unusually long polyglutamine stretch. Although these proteins share no other sequence or structural homologies, they all aggregate into intracellular inclusions that are believed to be pathological. We sought to determine what impact the position and number of glutamines have on the structure and aggregation of the host protein, apomyoglobin. Variable-length polyQ tracts were inserted either into the loop between the C- and D-helices (QnCD) or at the N-terminus (QnNT). The QnCD mutants lost some α-helix and gained unordered and/or β-sheet in a length-dependent manner. These mutants were partially unfolded and rapidly assembled into soluble chain-like oligomers. In sharp contrast, the QnNT mutants largely retained wild-type tertiary structure but associated into long, fibrillar aggregates. Control proteins with glycine-serine repeats (GS8CD and GS8NT) were produced. GS8CD exhibited similar structural perturbations and aggregation characteristics to an analogously sized Q16CD, indicating that the observed effects are independent of amino acid composition. In contrast to Q16NT, GS8NT did not form fibrillar aggregates. Thus, soluble oligomers are produced through structural perturbation and do not require polyQ, whereas classic fibrils arise from specific polyQ intermolecular interactions in the absence of misfolding.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号