Developmental and genotypic differences in the response of pea stem segments to auxin |
| |
Authors: | Natalie M. Barratt Peter J. Davies |
| |
Affiliation: | (1) Section of Plant Biology, Cornell University, 14835 Ithaca, NY, USA;(2) Present address: Department of Biology, Hiram College, 215 Colton Hall, 44234 Hiram, OH, USA |
| |
Abstract: | The objective of this investigation was to examine the response to exogenous auxin (indole-3-acetic acid; IAA)of stem segments at two developmental stages. The standard auxin response of excised stem segments and intact plants consists of an initial growth response and a prolonged growth response. We found that this biphasic response does not occur in internodes at very early stages. Stem segments of light grown pea of various genotypes were cut when the fourth internode was at 6–13% of full expansion (early-expansion) or at 18–25% of full expansion (mid-expansion). Length measurements of excised segments were made after 48 hours of incubation on buffer with or without auxin. An angular position transducer linked to a computerized data collection system provided high-resolution measurement of growth of stacks of segments incubated in buffer over 20 hours. Early-expansion segments of all genotypes deviated from the standard auxin response, while mid-expansion segments responded in a manner consistent with previous reports. Early-expansion segments of tall, light-grown plants were unique in showing an auxin-induced inhibition of growth. The auxin-induced inhibition correlated with high endogenous auxin content, as determined by HPLC and GC/MS, across genotypes and between early-expansion and mid-expansion segments of tall plants. Measurement of ethylene evolved from stem segments in response to auxin, and treatment of segments with the ethylene action inhibitor, norbornadiene, showed the inhibition to be mediated in part by heightened ethylene sensitivity. Growth of early-expansion segments of dwarf and severe dwarf plants was stimulated by exogenous auxin, but the growth rate increase was delayed compared to that in mid-expansion segments. This is the first time that such a growth response, termed the delayed growth response has been emonstrated. It is concluded that developmental stage and endogenous hormone content affect tissue response to exogenous auxin. |
| |
Keywords: | auxin ethylene growth inhibition stem segment elongation pea |
本文献已被 SpringerLink 等数据库收录! |
|