首页 | 本学科首页   官方微博 | 高级检索  
     


Ultrastructure of islet microcirculation, pericytes and the islet exocrine interface in the HIP rat model of diabetes
Authors:Hayden Melvin R  Karuparthi Poorna R  Habibi Javad  Lastra Guido  Patel Kamlesh  Wasekar Chetan  Manrique Camila Margarita  Ozerdem Ugur  Stas Sameer  Sowers James R
Affiliation:Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri 65212, USA. mrh29@usmo.com
Abstract:CONTEXT: The transgenic human islet amyloid polypeptide (HIP) rat model of type 2 diabetes mellitus (T2DM) parallels the functional and structural changes in human islets with T2DM. OBJECTIVE: The transmission electron microscope (TEM) was utilized to observe the ultrastructural changes in islet microcirculation. METHODS: Pancreatic tissue from male Sprague Dawley rats (2, 4, 8, 14 months) were used as controls (SDC) and compared to the 2-, 4-, 8- and 14-month-old HIP rat models. RESULTS: The 2-month-old HIP model demonstrated no islet or microcirculation remodeling changes when compared to the SDC models. The 4-month-old HIP model demonstrated significant pericapillary amyloid deposition and diminution of pericyte foot processes as compared to the SDC models. The 8-month-old model demonstrated extensive islet amyloid deposition associated with pericyte and beta-cell apoptosis when compared with SDC. The 14-month-old HIP model demonstrated a marked reduction of beta-cells and intra-islet capillaries with near complete replacement of islets by amyloidoses. Increased cellularity in the region of the islet exocrine interface was noted in the 4- to 14-month-old HIP models as compared to SDC. In contrast to intra-islet capillary rarefaction there was noticeable angiogenesis in the islet exocrine interface. Pericytes seemed to be closely associated with collagenosis, intra-islet adipogenesis and angiogenesis in the islet exocrine interface. CONCLUSION: The above novel findings regarding the microcirculation and pericytes could assist researchers and clinicians in a better morphological understanding of T2DM and lead to new strategies for prevention and treatment of T2DM.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号