首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance
Authors:Piñero Silvia  Rivera Javier  Romero David  Cevallos Miguel Angel  Martínez Alfredo  Bolívar Francisco  Gosset Guillermo
Institution:Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología/UNAM, Cuernavaca, Mexico.
Abstract:Tyrosinase (EC 1.14.18.1) is a monophenol oxidase responsible for the synthesis of the black pigment known as melanin. The tyrosinase gene (melA) is plasmid-encoded in many rhizobial species. In Rhizobium etli CFN42, the genetic location of melA in the symbiotic plasmid (p42d) and its RpoN-NifA regulation suggest an involvement in symbiosis. In this work, we analyzed the symbiotic phenotype of a streptomycin-resistant derivative of CFN42 (CE3), a melA mutant (SP2) and a complemented strain (SP66), demonstrating that melA inactivation reduced nodule formation rate and diminished total nodule number by 27% when compared to the CE3 strain. The nitrogen fixation capacity of the mutant strain was not affected. Also, in vitro assays were performed where the resistance of CE3, SP2 and SP66 strains to H(2)O(2) was evaluated; the melA mutant strain was consistently less resistant to peroxide. In another series of experiments, Escherichia coli W3110 strain expressing R. etli melA displayed enhanced resistance to p-hydroxybenzoic, vanillinic and syringic acids, which are phenolic compounds frequently found in the soil. Our results are the first to demonstrate a specific role for tyrosinase in R. etli: this enzyme is required during early symbiosis, apparently providing resistance against reactive oxygen species and phenolic compounds generated as part of the plant protective responses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号