首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete
Authors:Kate R. O’Brien  Julien Ménaché  Liza M. O’Moore
Affiliation:(1) Division of Environmental Engineering, University of Queensland, Brisbane, 4072, Australia;(2) Division of Civil Engineering, University of Queensland, Brisbane, 4072, Australia
Abstract:

Background, aim and scope  

Fly ash, a by-product of coal-fired power stations, is substituted for Portland cement to improve the properties of concrete and reduce the embodied greenhouse gas (GHG) emissions. Much of the world’s fly ash is currently disposed of as a waste product. While replacing some Portland cement with fly ash can reduce production costs and the embodied emissions of concrete, the relationship between fly ash content and embodied GHG emissions in concrete has not been quantified. The impact of fly ash content on embodied water is also unknown. Furthermore, it is not known whether a global trade in fly ash for use in concrete is feasible from a carbon balance perspective, or if transport over long distances would eliminate any CO2 savings. This paper aims to quantify GHG emissions and water embodied in concrete (fc = 32 MPa) as a function of fly ash content and to determine the critical fly ash transportation distance, beyond which use of fly ash in concrete increases embodied GHG emissions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号