首页 | 本学科首页   官方微博 | 高级检索  
     


cDNA cloning and expression of bovine aspartyl (asparaginyl) beta-hydroxylase.
Authors:S Jia  W J VanDusen  R E Diehl  N E Kohl  R A Dixon  K O Elliston  A M Stern  P A Friedman
Affiliation:Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486.
Abstract:Aspartyl (asparaginyl) beta-hydroxylase which specifically hydroxylates 1 Asp or Asn residue in certain epidermal growth factor-like domains of a number of proteins, has been previously purified to apparent homogeneity from detergent-solubilized bovine liver microsomes (Wang, Q., VanDusen, W. J., Petroski, C. J., Garsky, V. M., Stern, A. M., and Friedman, P. A. (1991) J. Biol. Chem. 266, 14004-14010). Three oligonucleotides, corresponding to three amino acid sequences of the purified hydroxylase, were used to screen bovine cDNA libraries. Several overlapping positive cDNA clones containing a full length open reading frame of 754 amino acids encoding a 85-kDa protein were isolated, and a cDNA, containing the full length open reading frame, was constructed from two of these clones. The resulting clone was then transcribed and translated in vitro to produce recombinant protein which possessed Asp beta-hydroxylase activity. These results constitute proof that the protein purified from bovine liver is an Asp beta-hydroxylase. Comparisons of deduced amino acid sequences of two other alpha-ketoglutarate-dependent dioxygenases, prolyl-4-hydroxylase and lysyl hydroxylase, with that of Asp beta-hydroxylase showed no significant homologies. Indeed, Asp beta-hydroxylase appears to be unique as no striking homology was found with known protein sequences. Furthermore, structural predictions derived from the deduced amino acid sequence are in accord with earlier Stokes' radius and sedimentation coefficient determinations of the enzyme, suggesting that the enzyme contains a relatively compact carboxyl-terminal catalytic domain and an extended amino terminus. This amino-terminal region has a potential transmembrane type II signal-anchor domain that could direct the catalytic domain into the lumen of the endoplasmic reticulum.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号