首页 | 本学科首页   官方微博 | 高级检索  
     


Conformational equilibria of valine studied by dynamics simulation.
Authors:R H Yun  J Hermans
Affiliation:Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill 27599-7260.
Abstract:The conformational probability distribution of a valine residue in the valine dipeptide and of the valine side chain in an alpha-helix, as well as the change in helix stability for replacing alanine with valine, has been calculated by molecular dynamics simulations of explicitly hydrated systems: dipeptide, tetrapeptide and 10-, 14- and 18-residue oligoalanine helices. All computed free-energy differences are means from at least eight separate slow-growth simulations, four in each direction and are reported with their root-mean-square deviations. Different values for the change in free energy of folding (delta delta G degrees) have been calculated with the use of forcefields having an all-atom and a central-atom representation of methyl groups, etc. The value obtained with the all-atom forcefield agrees well with new experimental values (3 kJ/mol = 0.7 kcal/mol). Furthermore, the most stable valine side-chain rotamer in the helix is different for these two representations. The most stable rotamer for the all atom conformation is the same one that predominates for valines in alpha-helices in proteins of known conformation. The lower conformational freedom of the valine side chain in the helix contributes 1 kJ/mol to the difference in stability computed with the all-atom potential; unfavorable interactions of the side chain with helix, even in the most stable conformation, further increase delta delta G degrees.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号