首页 | 本学科首页   官方微博 | 高级检索  
     


Expanding the scope of ‘Click’ derived 1,2,3-triazole ligands: New palladium and platinum complexes
Authors:David Schweinfurth
Affiliation:Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
Abstract:Using the ‘Click Protocol’ the new ligands 1-(cyclohexyl)-4-(2-pyridyl)-1,2,3-triazole (1), 1-(2-trifluoromethyl phenyl)-4-(2-pyridyl)-1,2,3-triazole (2), 1-(4-hexyl phenyl)-4-(2-pyridyl)-1,2,3-triazole (3), 1-(2-mercaptomethyl phenyl)-4-(2-pyridyl)-1,2,3-triazole (4) and 1-(4-N,N-dimethylamino phenyl)-4-(2-pyridyl)-1,2,3-triazole (5) were prepared by reacting 2-ethynylpyridine with the corresponding azides. In the next step the ligands were reacted with suitable palladium and platinum precursors to yield the cis-dichloro-palladium complexes 1a-4a and platinum complexes 1b-4b. Investigation of the molecular structure of the free ligands 1 and 5 reveals the formation of infinite chains in the 3D structure which are governed by hydrogen bonds between the triazole units. Likewise the 3D structure of 1a shows infinite chains which are held together by multiple remarkably short C-H?Cl-Pd contacts. Electrochemical investigation of the free ligands by cyclic voltammetry showed irreversible reduction processes at highly negative potential. Upon metal complexation huge anodic shifts of the reduction potential were observed. To further characterize the electronic properties of all the compounds UV-Vis spectra were also analyzed.
Keywords:Click reaction   1,2,3-Triazoles   Palladium complexes   Platinum complexes   H-bonding
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号