首页 | 本学科首页   官方微博 | 高级检索  
     


M-Cadherin-Mediated Cell Adhesion and Complex Formation with the Catenins in Myogenic Mouse Cells
Authors:Christine Kuch  Dirk Winnekendonk  Stefan Butz  Ursula Unvericht  Rolf Kemler  Anna Starzinski-Powitz
Affiliation:Institut der Anthropologie und Humangenetik für Biologen, Johann Wolfgang Goethe Universität, Siesmayerstrasse 70, D-60054, Frankfurt am Main, Germany;Max Planck-Institut für Immunbiologie, Stübeweg 51, D-79108, Freiburg, Germany
Abstract:M-cadherin is a member of the multigene family of calcium-dependent intercellular adhesion molecules, the cadherins, which are involved in morphogenetic processes. Amino acid comparisons between M-cadherin and E-, N-, and P-cadherin suggested that M-cadherin diverged phylogenetically very early from these classical cadherins. It has been shown that M-cadherin is expressed in prenatal and adult skeletal muscle. In the cerebellum, M-cadherin is present in an adherens-type junction which differs in its molecular composition from the E-cadherin-mediated adherens-type junctions. These and other findings raised the question of whether M-cadherin and the classical cadherins share basic biochemical properties, notably the calcium-dependent resistance to proteolysis, mediation of calcium-dependent intercellular adhesion, and the capability to form M-cadherin complexes with the catenins. Here we show that M-cadherin is resistant to trypsin digestion in the presence of calcium ions but at lower trypsin concentrations than E-cadherin. When ectopically expressed in LMTKcells, M-cadherin mediated calcium-dependent cell aggregation. Finally, M-cadherin was capable of forming two distinct cytoplasmic complexes in myogenic cells, either with α-catenin/β-catenin or with α-catenin/plakoglobin, as E- and N-cadherin, for example, have previously been shown to form. The relative amount of these complexes changed during differentiation from C2C12 myoblasts to myotubes, although the molecular composition of each complex was unaffected during differentiation. These results demonstrate that M-cadherin shares important features with the classical cadherins despite its phylogenetic divergence.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号