首页 | 本学科首页   官方微博 | 高级检索  
     


Intracellular Cs+ activates the PKA pathway,revealing a fast,reversible, Ca2+-dependent inactivation of L-type Ca2+ current
Authors:Brette Fabien  Lacampagne Alain  Sallé Laurent  Findlay Ian  Le Guennec Jean-Yves
Affiliation:Centre National de la Recherche Scientifique Unité Mixte de Recherche 6542, Université de Tours, France. bmsfpb@bms.leeds.ac.uk
Abstract:Inactivation of the L-type Ca2+ current (ICaL) was studied in isolated guinea pig ventricular myocytes with different ionic solutions. Under basal conditions, ICaL of 82% of cells infused with Cs+-based intracellular solutions showed enhanced amplitude with multiphasic decay and diastolic depolarization-induced facilitation. The characteristics of ICaL in this population of cells were not due to contamination by other currents or an artifact. These phenomena were reduced by ryanodine, caffeine, cyclopiazonic acid, the protein kinase A inhibitor H-89, and the cAMP-dependent protein kinase inhibitor. Forskolin and isoproterenol increased ICaL by only ~60% in these cells. Cells infused with either N-methyl-D-glucamine or K+-based intracellular solutions did not show multiphasic decay or facilitation under basal conditions. Isoproterenol increased ICaL by ~200% in these cells. In conclusion, we show that multiphasic inactivation of ICaL is due to Ca2+-dependent inactivation that is reversible on a time scale of tens of milliseconds. Cs+ seems to activate the cAMP-dependent protein kinase pathway when used as a substitute for K+ in the pipette solution. L-type calcium current; calcium-dependent inactivation; facilitation; phosphorylation; cesium
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号