首页 | 本学科首页   官方微博 | 高级检索  
     

多源多角度遥感数据反演森林叶面积指数方法
引用本文:杨贵军,黄文江,王纪华,邢著荣. 多源多角度遥感数据反演森林叶面积指数方法[J]. 植物学报, 2010, 45(5): 566-578. DOI: 10.3969/j.issn.1674-3466.2010.05.006
作者姓名:杨贵军  黄文江  王纪华  邢著荣
作者单位:1国家农业信息化工程技术研究中心, 北京 100097;
2山东科技大学摄影测量与遥感系, 青岛 266510
基金项目:国家自然科学基金,863计划,北京市自然科学基金,中国科学院遥感应用研究所遥感科学国家重点实验室开放基金
摘    要:利用北京1号和Landsat多源数据组合成4个角度多波段数据集, 在考虑森林三维垂直分布特点的基础上, 结合INFORM几何光学与辐射传输混合模型, 通过聚类+神经元网络方式, 建立相应的多源多角度LAI反演模型。最后利用实地LAI测量数据和MODIS LAI产品, 对不同角度组合和噪声水平下的LAI反演结果进行验证。结果表明: 在保证数据质量的条件下, 通过增加角度可以提高森林的LAI反演精度, 最终R2=0.713, RMSE=0.957, 比单个角度的反演精度平均提高约20%。

关 键 词:聚类+神经元网络  森林叶面积指数  混合模型  多源多角度
收稿时间:2009-08-05
修稿时间:2009-12-14

Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data
Guijun Yang,Wenjiang Huang,Jihua Wang,Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Bulletin of Botany, 2010, 45(5): 566-578. DOI: 10.3969/j.issn.1674-3466.2010.05.006
Authors:Guijun Yang  Wenjiang Huang  Jihua Wang  Zhurong Xing
Affiliation:1National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; 2Department of Photogrammetry and Remote Sensing, Shandong University of Science and Technology, Qingdao 266510, China
Abstract:Beijing small satellite, named BJ-1, and Landsat TM data were used to construct multi-source and four-angle datasets for inversion of forest leaf area index (LAI). Taking into account the vertical and 3-D distribution of forests, the hybrid model, INFORM, combining the geometric optical model and radiative transfer model, was used to support the retrieval model of LAI. The clustered method of ANN was utilized to obtain the information from forward INFORM- model simulated data under different groups of input parameters. After these steps, the inversion model was applied in different combinations of multi-angle under different levels of noise. The accuracy of inversion of forest LAI can be improved by adding observations of angle data if the quality of data is considered. Our data analysis resulted in an accuracy of R2=0.713, RMSE=0.957, which was 20% greater than the average accuracy of mono-angle data for inversion of LAI.
Keywords:clustered method of ANN  forest LAI  hybrid model  multi-source and multi-angle
本文献已被 CNKI 等数据库收录!
点击此处可从《植物学报》浏览原始摘要信息
点击此处可从《植物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号