首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Semi-synthetic heparin derivatives: chemical modifications of heparin beyond chain length, sulfate substitution pattern and N-sulfo/N-acetyl groups
Authors:Fernández Cristina  Hattan Christopher M  Kerns Robert J
Institution:Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA.
Abstract:The glycosaminoglycan heparin is a polyanionic polysaccharide most recognized for its anticoagulant activity. Heparin binds to cationic regions in hundreds of prokaryotic and eukaryotic proteins, termed heparin-binding proteins. The endogenous ligand for many of these heparin-binding proteins is a structurally similar glycosaminoglycan, heparan sulfate (HS). Chemical and biosynthetic modifications of heparin and HS have been employed to discern specific sequences and charge-substitution patterns required for these polysaccharides to bind specific proteins, with the goal of understanding structural requirements for protein binding well enough to elucidate the function of the saccharide-protein interactions and/or to develop new or improved heparin-based pharmaceuticals. The most common modifications to heparin structure have been alteration of sulfate substitution patterns, carboxyl reduction, replacement N-sulfo groups with N-acetyl groups, and chain fragmentation. However, an accumulation of reports over the past 50 years describe semi-synthetic heparin derivatives obtained by incorporating aliphatic, aryl, and heteroaryl moieties into the heparin structure. A primary goal in many of these reports has been to identify heparin-derived structures as new or improved heparin-based therapeutics. Presented here is a perspective on the introduction of non-anionic structural motifs into heparin structure, with a focus on such modifications as a strategy to generate novel reduced-charge heparin-based bind-and-block antagonists of HS-protein interactions. The chemical methods employed to synthesize such derivatives, as well as other unique heparin conjugates, are reviewed.
Keywords:Heparin  Heparinoids  Heparin analogs  Semi-synthesis  Glycosaminoglycans
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号