首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selenoproteinless animals: selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis
Authors:Lobanov Alexey V  Hatfield Dolph L  Gladyshev Vadim N
Institution:Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA.
Abstract:Proteins containing the 21st amino acid, selenocysteine (Sec), have been described in all three domains of life, but the composition of selenoproteomes in organisms varies significantly. Here, we report that aquatic arthropods possess many selenoproteins also detected in other animals and unicellular eukaryotes, and that most of these proteins were either lost or replaced with cysteine-containing homologs in insects. As a result of this selective selenoproteome reduction, fruit flies and mosquitoes have three known selenoproteins, and the honeybee, Apis mellifera, a single detected candidate selenoprotein. Moreover, we identified the red flour beetle, Tribolium castaneum, and the silkworm, Bombyx mori, as the first animals that lack any Sec-containing proteins. These insects also lost the Sec biosynthesis and insertion machinery, but selenophosphate synthetase 1 (SPS1), an enzyme previously implicated in Sec biosynthesis, is present in all insects, including T. castaneum and B. mori. These data indicate that SPS1 functions in a pathway unrelated to selenoprotein synthesis. Since SPS1 evolved from a protein that utilizes selenium for Sec biosynthesis, an attractive possibility is that SPS1 may define a new pathway of selenium utilization in animals.
Keywords:selenophosphate synthetase  selenocysteine  selenoproteome  Sec-insertion machinery
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号