首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases
Authors:A J Rivett
Abstract:Four intracellular proteases partially purified from liver preferentially degraded the oxidatively modified (catalytically inactive) form of glutamine synthetase. One of the proteases was cathepsin D which is of lysosomal origin; the other three proteases were present in the cytosol. Two of these were calcium-dependent proteases with different calcium requirements. The low-calcium-requiring type (calpain I) accounted for most of the calcium-dependent activity of both mouse and rat liver. The calcium-independent cytosolic protease, referred to as the alkaline protease, has a molecular weight of 300,000 determined by gel filtration. Native glutamine synthetase was not significantly degraded by the cytosolic proteases at physiological pH, but oxidative modification of the enzyme caused a dramatic increase in its susceptibility to attack by these proteases. In contrast, trypsin and papain did degrade the native enzyme and the degradation of modified glutamine synthetase was only 2- to 4-fold more rapid. Adenylylation of glutamine synthetase had little effect on its susceptibility to proteolysis. Although major structural modifications such as dissociation, relaxation, and denaturation also increased the rate of degradation, the oxidative modification is a specific type of covalent modification which could occur in vivo. Oxidative modification can be catalyzed by a variety of mixed function oxidase systems present within cells and causes inactivation of a number of enzymes. Moreover, the presence of cytosolic proteases which recognize the oxidized form of glutamine synthetase suggests that oxidative modification may be involved in intracellular protein turnover.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号