首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics
Authors:Bonaguidi Michael A  Wheeler Michael A  Shapiro Jason S  Stadel Ryan P  Sun Gerald J  Ming Guo-li  Song Hongjun
Affiliation:1 Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
3 The Human Genetics Predoctoral Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
4 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
Abstract:Neurogenesis and gliogenesis continue in discrete regions of the adult mammalian brain. A fundamental question remains whether cell genesis occurs from distinct lineage-restricted progenitors or from self-renewing and multipotent neural stem cells in the adult brain. Here, we developed a genetic marking strategy for lineage tracing of individual, quiescent, and nestin-expressing radial glia-like (RGL) precursors in the adult mouse dentate gyrus. Clonal analysis identified multiple modes of RGL activation, including asymmetric and symmetric self-renewal. Long-term lineage tracing in?vivo revealed a significant percentage of clones that contained RGL(s), neurons, and astrocytes, indicating capacity of individual RGLs for both self-renewal and multilineage differentiation. Furthermore, conditional Pten deletion in RGLs initially promotes their activation and symmetric self-renewal but ultimately leads to terminal astrocytic differentiation and RGL depletion in the adult hippocampus. Our study identifies RGLs as self-renewing and multipotent neural stem cells and provides novel insights into in?vivo properties of adult neural stem cells.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号