首页 | 本学科首页   官方微博 | 高级检索  
     


Binding of YC-1/BAY 41-2272 to soluble guanylate cyclase: A new perspective to the mechanism of activation
Authors:Biswajit Pal  Teizo Kitagawa
Affiliation:a Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
b Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
Abstract:Soluble guanylate cyclase (sGC), a heterodimeric heme protein, catalyses the conversion of GTP in to cyclic GMP, which acts as a second messenger in cellular signaling. Nitric oxide activates this enzyme several hundred folds over its basal level. Carbon monoxide, along with some activator molecules like YC-1 and BAY, also synergistically activate sGC. Mechanism of this synergistic activation is a matter of debate. Here we review the existing literature to identify the possible binding site for YC-1 and BAY on bovine lung sGC and its mechanism of activation. These two exogenous compounds bind sGC on α subunit inside a pocket and thus exert allosteric effect via subunit interface, which is relayed to the catalytic site. We used docking studies to further validate this hypothesis. We propose that the binding of YC-1/BAY inside the sensory domain of the α subunit modulates the interactions on the subunit interface resulting in rearrangements in the catalytic site into active conformation and this partly induces the cleavage of Fe-His bond.
Keywords:sGC   YC-1   BAY   GTP   Allostery   Activation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号