首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An evolutionally conserved Lys122 is essential for function in Rhodospirillum rubrum bona fide RuBisCO and Bacillus subtilis RuBisCO-like protein
Authors:Toshihiro Nakano  Eiichi Mizohata  Akiho Yokota
Institution:a Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
b Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Abstract:Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO-like protein (RLP) catalyze similar enolase-type reactions. Both enzymes have a conserved non-catalytic Lys122 or Arg122 on the β-strand E lying in the interface between the N- and C-terminal domains. We used site-directed mutagenesis to analyze the function of Lys122 in the form II Rhodospirillum rubrum RuBisCO (RrRuBisCO) and Bacillus subtilis RLP (BsRLP). The K122R mutant of RrRuBisCO had a 40% decrease in kcat for carboxylase activity, a 2-fold increase in Km for CO2, and a 1.9-fold increase in Km for ribulose-1,5-bisphosphate. K122M and K122E mutants of RrRuBisCO were almost inactive. None of the substitutions affected the thermal stability of RrRuBisCO. The K122R mutant of BsRLP had a 32% decrease in kcat and lower thermal stability than the wild-type enzyme. The K122M and K122E mutants of BsRLP failed to form a catalytic dimer. Our results suggest that the lysine residue is essential for function in both enzymes, although in each case, its role is likely distinct.
Keywords:RuBisCO  RuBisCO-like protein  RuBisCO superfamily  Rhodospirillum rubrum  Bacillus subtilis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号