首页 | 本学科首页   官方微博 | 高级检索  
     


Configurational effect on the reflection coefficient for rigid solutes in capillary pores
Authors:John L. Anderson
Affiliation:Department of Chemical Engineering, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, U.S.A.
Abstract:Osmosis-driven flow through a leaky porous membrane is analyzed by combining the relevant equations describing spatial and orientational distributions of rigid non-spherical solute particles with the equations of fluid flow in a single capillary which is very narrow compared to its length. The capillary cross-section is either circular or rectangular and connects two bulk solution reservoirs having equal pressures but unequal concentrations of solute (osmotic pressure). The objective of this analysis is to study the effect of particle and pore shape on the reflection coefficient (σ0). The most significant result is that for solute particles of any eccentricity from one (sphere) to infinity (needle) in either the circular or rectangular pores, σ0 ≈ (1?K)2, where K is the pore-bulk equilibrium partition coefficient. A corollary of this result is that, comparing solute particles of equal volume, the more elongated a solute is the higher is its reflection coefficient; furthermore, for a given solute, the reflection coefficient is higher for pores that are more eccentric compared to a circle of equal area.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号