首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation
Authors:Smet-Nocca Caroline  Broncel Malgorzata  Wieruszeski Jean-Michel  Tokarski Caroline  Hanoulle Xavier  Leroy Arnaud  Landrieu Isabelle  Rolando Christian  Lippens Guy  Hackenberger Christian P R
Institution:Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, IFR 147, Université de Lille1, 59655 Villeneuve d'Ascq Cedex, France. caroline.smet@univ-lille1.fr
Abstract:Phosphorylation of the microtubule-associated Tau protein plays a major role in the regulation of its activity of tubulin polymerization and/or stabilization of microtubule assembly. A dysregulation of the phosphorylation/dephosphorylation balance leading to the hyperphosphorylation of Tau proteins in neurons is thought to favor their aggregation into insoluble filaments. This in turn might underlie neuronal death as encountered in many neurodegenerative disorders, including Alzheimer's disease. Another post-translational modification, the O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), controls the phosphorylation state of Tau, although the precise mechanism is not known. Moreover, analytical difficulties have hampered the precise localization of the O-GlcNAc sites on Tau, except for the S400 site that was very recently identified on the basis of ETD-FT-MS. Here, we identify three O-GlcNAc sites by screening a library of small peptides sampling the proline-rich, the microtubule-associated repeats and the carboxy-terminal domains of Tau as potential substrates for the O-β-N-acetylglucosaminyltransferase (OGT). The in vitro activity of the nucleocytoplasmic OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Using phosphorylated peptides, we establish the relationship between phosphate and O-GlcNAc incorporation at these sites. Phosphorylation of neighboring residues S396 and S404 was found to decrease significantly S400 O-GlcNAcylation. Reciprocally, S400 O-GlcNAcylation reduces S404 phosphorylation by the CDK2/cyclinA3 kinase and interrupts the GSK3β-mediated sequential phosphorylation process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号