Fiber type and metabolic dependence of T2 increases in stimulated rat muscles. |
| |
Authors: | B M Prior L L Ploutz-Snyder T G Cooper R A Meyer |
| |
Affiliation: | Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA. |
| |
Abstract: | This study examined the relationships between muscle fiber type, metabolism, and blood flow vs. the increase in skeletal muscle (1)H-NMR transverse relaxation time (T2) after stimulation. Triceps surae muscles of anesthetized rats were stimulated in situ at 1-10 Hz for 6 min, and T2 was calculated from (1)H-NMR images acquired at 4.7 T immediately after stimulation. At low-to-intermediate frequencies (1-5 Hz), the stimulation-induced T2 increase was greater in the superficial, fast-twitch white portion of the gastrocnemius muscle compared with the deeper, more aerobic muscles of the triceps surae group. Although whole triceps muscle area changed in parallel with T2 after stimulation when blood flow was intact, clamping of the femoral artery during stimulation prevented an increase in muscle area but not an increase in T2. Partial inhibition of lactic acid production with iodoacetate diminished intracellular acidification (measured by (31)P-NMR spectroscopy) during brief (1.5 min) stimulation but had no significant effect either on estimated osmolite accumulation or on muscle T2 after stimulation. Depletion of muscle phosphocreatine content by feeding rats beta-guanidinopropionate decreased both estimated osmolite accumulation and T2 after 1.5-min stimulation. The results are consistent with the hypothesis that the T2 increase in stimulated muscle is related to osmotically driven shifts of fluid into an intracellular compartment. |
| |
Keywords: | |
|
| 点击此处可从《Journal of applied physiology》浏览原始摘要信息 |
|
点击此处可从《Journal of applied physiology》下载全文 |
|