首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effects of H2O2 on electromechanical activity of the ileum longitudinal muscle
Authors:Rekalov V  Juránek I  Gurkovskaya A  Shuba M  Bauer V
Institution:Bogomoletz Institute of Physiology of Ukrainian Academy of Sciences, Kiev, Ukraine.
Abstract:The effects of H2O2 on electrical and mechanical activity of the longitudinal layer from the guinea-pig ileum were studied using sucrose-gap technique and the influence of H2O2 on ionic current was investigated in single smooth muscle cells by the patch-clamp method. In most of the preparations tested, the spontaneous activity observed was composed of slow waves with superimposed action potentials (APs). Both were resistant to tetrodotoxin and atropine. H2O2 (1 mmol/l) evoked sustained 3-5 mV membrane depolarisation, doubled the amplitude of the slow waves and increased their frequency, augmented the APs and reduced their splitting. These changes were accompanied with significant contraction, which had an amplitude comparable to that of the tonic component of 50 mmol/l K+-induced contraction. Calcium-free solution caused membrane depolarisation, reduction of the slow wave amplitude and frequency, disappearance of APs and decreased the mechanical tension of the preparations. Application of H2O2 (1 mmol/l) into the zero-calcium bath solution recovered the APs, which was accompanied by a low amplitude contraction. H2O2 (up to 1 mmol/l) increased the L-type calcium current (I(Ca)) both under conventional whole-cell patch-clamp configuration and under amphotericin-perforated patches by 16 +/- 3%. These data demonstrated that contractile response of the ileum longitudinal smooth muscle preparation evoked by H2O2 was mainly due to the enhanced electrical activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号