Affiliation: | 1.Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India ; |
Abstract: | Adverse environmental conditions greatly influence crop production every year and threaten food security. Plants have a range of signaling networks to combat these stresses, in which several stress-responsive genes and regulatory proteins function together. One such important family of proteins, the Stress Associated Protein (SAP) family, has been identified as a novel regulator of multiple stresses. The SAPs possess a characteristic N-terminal A20 zinc-finger domain combined with either AN1 or C2H2 at the C-terminus. SAPs provide tolerance against various abiotic stresses, including cold, salt, drought, heavy metal, and wounding. The majority of SAPs are stress-inducible and have a function in conferring stress tolerance in transgenics. The role of SAPs in regulating biotic stress responses is a newly emerging field among researchers. SAPs interact with many other proteins to execute their functions; however, the detailed mechanism of these interactions needs to be elucidated. In this context, the present review provides a detailed view of the evolution and functions of SAPs in plants. The involvement in crosstalk between abiotic and biotic stress signaling pathways makes SAPs ideal targets to develop crops with tolerance against multiple stresses without any yield penalty. Altogether, we provide current knowledge on SAPs for investigating their role in stress response, which can further be exploited to develop climate-resilient crops through transgene-based, breeding-mediated, or genome-editing approaches. |